Abstract

Fourier-transform infrared (FT-IR) spectroscopy is known as a high-resolution method for the rapid identification of pure cultures of microorganisms. Here, we evaluated FT-IR as a method for the quantification of bacterial populations in binary mixed cultures consisting of Pseudomonas putida and Rhodococcus ruber. A calibration procedure based on Principal Component Regression was developed for estimating the ratio of the bacterial species. Data for method calibration were gained from pure cultures and artificially assembled communities of known ratios of the two member populations. Moreover, to account for physiological variability, FT-IR measurements were performed with organisms sampled at different growth phases. Measurements and data analyses were subsequently applied to growing mixed cultures revealing that growth of R. ruber was almost completely suppressed in co-culture with P. putida. Population ratios obtained by fatty acid analysis as an independent reference method were in high agreement with the FT-IR derived ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.