Abstract

Seasonal processes in cold countries significantly affect the engineering characteristics of highway subsoil over time. Cyclical freeze-thaw leads to changes in thermal and moisture conditions. As a result, road bearing capacity can progressively change from the initial design. In this work, a modified laboratory method was developed, with cyclical freeze-thaw of soil samples and simultaneous supply of deionised water and a de-icing agent (sodium chloride) to the base. The benefits of the test procedure included slow freezing, simulating the conditions that can be experienced by highway soils in cold environments, extended soil column heights and a larger number of identical soil samples, which allowed experimental variability to be assessed. The method included the monitoring of moisture and chemical mass transfer in the soils. Samples supplied with deionised water experienced ice segregation in their upper parts, and significant heave. While soils supplied with NaCl solution behaved in a similar fashion during their first freeze-thaw cycle, the second cycle saw a reduction in the rate of migration of the freezing front within the soils and also less ice segregation and less heave due to increased salinity. Salt was preferentially transferred upwards in the soil columns as a result of the thermal gradient, including negative pressure associated with cryosuction, and osmotic pressure. The new method provides a more realistic laboratory approach to assessing potential freeze-thaw impacts, and the effects of de-icing agents on soils beneath roads, and in different settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.