Abstract

The investigation presented herein was intended to study the influence of long transportation time and extreme temperature on the fresh performance of self-consolidating concrete. The study is useful in simulating concrete mixing and hauling by means of concrete truck mixer during extreme temperature. Temperatures of 43 and -0.5oC, to simulate hot and cold weathers, were used to evaluate the unconfined workability (slump flow), flow rate (T50), and dynamic stability (VSI) of the matrices transported for 60 and 80 minutes. Mixing and transporting under the temperature of 21oC and transportation duration of 10 minutes was adopted as the control condition. Polycarboxylate-based high range water-reducing admixture (HRWRA) and viscosity-modifying admixture (VMA) were used to produce self-consolidating concretes with slump flow of 635 ± 25 mm, VSI of 0, and T50 of 2 to 5 seconds. The test results revealed that the selfconsolidating concrete mixed and transported under extreme temperature experienced slump flow loss in elevated temperature and slump flow gain in cold environment, when compared to the equivalent concrete produced under the reference condition. While the flow rate/plastic viscosity of the selected matrix increased in the cold temperature, the concrete remained highly stable irrespective of the selected temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.