Abstract
Abstract Fracture behaviour of welded joints with dissimilar weld metals (WMs) has been investigated in this paper. A low-toughness WM and a high-strength WM with a moderate toughness were layered alternately in the thickness direction. Fracture tests were conducted with 3-point bend (3PB) specimen and tension plate with a through-thickness crack. The 3PB specimen showed a multistage fracture. The first fracture was originated from the low-toughness WM. On the other hand, no multistage fracture occurred in the tension plate, although the low-toughness WM was responsible for brittle fracture initiation in the same manner as in the 3PB specimen. The fracture toughness of the multilayer dissimilar joint was apparently larger than the welded joint made with the low toughness WM only. The weakest-link model has been applied for analyzing those toughness properties of the multilayer dissimilar joint. The estimated fracture toughness by the weakest-link model was not necessarily consistent with the toughness data, which was because of the local stress elevation in the low-toughness WM area close to the high-strength WM. Because of this, a modified Weibull stress model was used to estimate fracture toughness values for the multilayer dissimilar joint WM and to account for an active fracture zone length scale in the multilayer weld joint materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.