Abstract

The leak-before-break (LBB) concept is generally used to design the primary heat transport piping for a nuclear power plant. The LBB concept is based on the fracture resistance curve, which is obtained by J–R tests on various types of specimens. Fracture toughness data differ according to the various types of specimens. It has also been known that there is a difference in the constraint effect between real pipes and standard specimens, and LBB design using standard specimens is conservative. We propose a new type of specimen for J–R tests, a tensile compact pipe (CP) specimen, and perform fracture toughness tests on various types of specimens. We also perform constraint effect analysis on such specimens. The Q-stresses of the tensile CP specimens are lower than those of real pipes under 4-point bending, and are higher than those of elbow pipes. If the lever length of a tensile CP specimen is controlled, the specimen can simulate various stress conditions, and it is thought that the LBB design of piping in service can be performed using this specimen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call