Abstract

A critical review on the approaches to assess the infectivity of the Hepatitis E virus (HEV) in food recommended that a cell culture-based method should be developed. Due to the observations that viral loads in food may be low, it is important to maximise the potential for detection of HEV in a food source in order to fully assess infectivity. To do so, would require minimal processing of any target material. In order to proceed with the development of an infectivity culture method that is simple, robust and reproducible, there are a number of points to address; one being to assess if food homogenates are cytotoxic to HEV susceptible target cells. Food matrices previously shown to have detectable HEV nucleic acid were selected for analysis and assessed for their effect on the percentage survival of three cell lines commonly used for infectivity assays. Target cells used were A549, PLC/PRF/5 and HepG2 cells. The results showed that, as expected, various food homogenates have differing effects on cells in vitro. In this study, the most robust cell line over a time period was the A549 cell line in comparison to HepG2, with PLC/PRF/5 cells being the most sensitive. Overall, this data would suggest that FH can be left in contact with A549 cells for a period of up to 72 h to maximise the potential for testing infection. Using food homogenates directly would negate any concerns over losing virus as a result of any additional processing steps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.