Abstract

ABSTRACT With advancements in autonomous driving, demand for stringent and computationally efficient traffic sign detection systems has increased. However, bringing such a system to a deployable level requires handling critical accuracy and processing speed issues. A focal loss-based single-stage object detector, i.e RetinaNet, is used as a trade-off between accuracy and processing speed as it handles the class imbalance problem of the single-stage detector and is thus suitable for traffic sign detection (TSD). We assessed the detector’s performance by combining various feature extractors such as ResNet-50, ResNet-101, and ResNet-152 on three publicly available TSD benchmark datasets. Performance comparison of the detector using different backbone includes evaluation parameters like mean average precision (mAP), memory allocation, running time, and floating-point operations. From the evaluation results, we found that the RetinaNet object detector using the ResNet-152 backbone obtains the best mAP, while that using ResNet-101 strikes the best trade-off between accuracy and execution time. The motivation behind benchmarking the detector on different datasets is to analyse the detector’s performance on different TSD benchmark datasets. Among the three feature extractors, the RetinaNet model trained using the ResNet-50 backbone is an excellent model in memory consumption, making it an optimal choice for low-cost embedded devices deployment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.