Abstract

PurposeTo test octafluorocyclobutane (OFCB) as an inhalation contrast agent for fluorine‐19 MRI of the lung, and to compare the image quality of OFCB scans with perfluoropropane (PFP) scansTheory and MethodsAfter normalizing for the number of signal averages, a theoretical comparison between the OFCB signal‐to‐noise ratio (SNR) and PFP SNR predicted the average SNR advantage of 90% using OFCB during gradient echo imaging. The OFCB relaxometry was conducted using single‐voxel spectroscopy and spin‐echo imaging. A comparison of OFCB and PFP SNRs was performed in vitro and in vivo. Five healthy Sprague‐Dawley rats were imaged during single breath‐hold and continuous breathing using a Philips Achieva 3.0T MRI scanner (Philips, Andover, MA). The scan time was constant for both gases. Statistical comparison between PFP and OFCB scans was conducted using a paired t test and by calculating the Bayes factor.ResultsSpin‐lattice (T1) and effective spin‐spin (T2∗) relaxation time constants of the pure OFCB gas were determined as 28.5 ± 1.2 ms and 10.5 ± 1.8 ms, respectively. Mixing with 21% of oxygen decreased T1 by 30% and T2∗ by 20%. The OFCB in vivo images showed 73% higher normalized SNR on average compared with images acquired using PFP. The statistical significance was shown by both paired t test and calculated Bayes factors. The experimental results agree with theoretical calculations within the error of the relaxation parameter measurements.ConclusionThe quality of the lung images acquired using OFCB was significantly better compared with PFP scans. The OFCB images had higher a SNR and were artifact‐free.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call