Abstract

Flow liquefaction is a major design issue for large soil structures such as mine tailings impoundments and earth dams. If a soil is strain softening in undrained shear and, hence, susceptible to flow liquefaction, an estimate of the resulting liquefied shear strength is required for stability analyses. Many procedures have been published for estimating the residual or liquefied shear strength of cohesionless soils. This paper presents cone penetration test-based relationships to evaluate the susceptibility to strength loss and liquefied shear strength for a wide range of soils. Case-history analyses by a number of investigators are reviewed and used with some additional case histories. Extrapolations beyond the case-history data are guided by laboratory studies and theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call