Abstract
Abstract The arrangement of electrolyte inlet in the copper electro-refining (ER) cell has a great influence on the local flow field, which affects the distribution of electrical current density in consequence. In order to understand the complicated phenomena of electrolyte flow behavior in vertical counter electrodes in full-scale copper ER cell, the three-dimensional computational fluid dynamics (CFD) models with four different arrangements of electrolyte inlets, i.e., single inlet (SI), central bottom inlets (CBI), top side interlaced inlets (TII), and bottom side interlaced inlets (BII), were established to simulate the flow behavior. Simulation results have revealed that the parallel injection devices help to improve the electrolyte velocity between electrodes, and while the relative range of electrolyte velocity in CBI exceeds that of TII and BII, which is more than 4 times, indicating its severer unequal flow distribution. Meanwhile, the average velocity of electrolyte in BII is 4 times larger than that of SI due to its higher turbulence intensity. Generally, one of the efficient ways to supply fresh copper solution rapidly and uniformly into the inter-electrode space is to adapt the arrangement of BII. By utilizing such an arrangement, the electro-refining under high electrical current density is possible, and the productivity can be increased in sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.