Abstract

Thousands of existing wet retention ponds have been built across the United States, primarily for the mitigation of peak flow and removal of sediment. These systems struggle to mitigate soluble nutrient loads from urban watersheds. A simple retrofit for improvement of pond performance for nitrogen and phosphorus removal could become popular. Floating treatment wetlands (FTWs), one such retrofit, are a hydroponic system that provides a growing medium for hydrophytic vegetation, which obtain nutrients from the stormwater pond. Installation of FTWs does not require earth moving, eliminates the need for additional land to be dedicated to treatment, and does not detract from the required storage volume for wet ponds (because they float). To test whether FTWs reduce nutrients and sediment, two ponds in Durham, NC, were monitored pre- and post-FTW installation. At least 16 events were collected from each pond during both monitoring periods. The distinguishing characteristic between the two ponds post-retrofit was the fraction of pond surface covered by FTWs; the DOT pond and Museum ponds had 9% and 18%, respectively, of their surface area covered by FTWs. A very small fraction of N and P was taken up by wetland plants, with less than 2% and 0.2%, respectively, of plant biomass as N and P. Temperature measurements at three depths below FTWs and at the same depths in open water showed no significant difference in mean daily temperatures, suggesting little shading benefit from FTWs. The two ponds produced effluent temperatures that exceeded trout health thresholds. Both the pre- and post-FTW retrofit ponds performed well from a pollutant removal perspective. One pond had extremely low total nitrogen (TN) effluent concentrations (0.41mg/L and 0.43mg/L) during both pre- and post-FTW retrofit periods, respectively. Floating treatment wetlands tended to improve pollutant capture within both ponds, but not always significantly. Mean effluent concentrations of TN were reduced at the DOT pond from 1.05mg/L to 0.61mg/L from pre- to post-retrofit. Mean total phosphorus (TP) effluent concentrations were reduced at both wet ponds from pre- to post-retrofit [0.17mg/L to 0.12mg/L (DOT pond) and 0.11mg/L to 0.05mg/L (Museum pond)]. The post-retrofit effluent concentrations were similar to those observed for bioretention cells and constructed stormwater wetlands in North Carolina. The DOT pond showed no significant differences between pre- and post-retrofit effluent concentrations for all nine analytes. The Museum pond had a statistically significant improvement post-retrofit (when compared to the pre-retrofit period) for both TP and total suspended solids (TSS). Wetland plant root length was measured to be approximately 0.75m, which had the benefit of stilling water flow, thereby increasing sedimentation. Results suggested that greater percent coverage of FTWs produced improved pollutant removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call