Abstract
To evaluate and compare the mechanical properties, water sorption, water solubility, and degree of double bond conversion of three different commercially available three-dimensional (3D) printing resins used for the fabrication of flexible occlusal splints. A digital printer was used to generate specimens from the evaluated splint materials (KeySplint Soft, IMPRIMO LC Splint flex, and V-Print splint comfort). The specimens were equally divided and tested either dry or after water storage at 37°C for 30 days. A three-point bending test was used to assess flexural strength, elastic modulus, and fracture toughness. A two-body wear test was performed using a dual-axis chewing simulator. Water sorption and water solubility were measured after 30 days. The degree of double bond conversion was determined by FTIR-spectrometry. All data for the evaluated properties were collected and statistically analyzed. Both material and storage conditions had a significant effect on the flexural strength (P<0.001), elastic modulus (P<0.001), fracture toughness (P<0.001), and wear (P<0.001). The highest water sorption was noticed with IMPRIMO LC Splint flex (1.9±0.0 %), while V-Print splint comfort displayed the lowest water solubility (0.2±0.0 %). For the degree of conversion, it was statistically non-significant among the different materials (P=0.087). Different flexible 3D-printed splints available in the market displayed variations in the evaluated properties and clinicians should consider these differences when choosing occlusal device materials. Among the tested flexible splint materials, KeySplint Soft had the greatest flexural strength, elastic modulus, fracture toughness, wear resistance, and degree of conversion. It also showed the lowest water sorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.