Abstract

Filtering is a key process which removes unwanted parts of signals. During signal recording, various forms of noises distort data. Physiological signals are highly noise sensitive and to evaluate them powerful filtering approaches must be applied. The aim of this study is to compare modern filtering approaches on scalp signals. Brain activities were generally examined by brain signals like EEG and evoked potentials (EP). In this study, data were recorded from university students whose age between 18 and 25 years with visual and auditory stimuli. Discrete wavelet transforms, singular spectrum analysis, empirical mode decomposition and discrete Fourier transform based filters were used and compared with raw data on classification performance. Higuchi fractal dimension and entropy features were extracted from EEG; P300 features were extracted from EP signals. Classification was applied with support vector machines. All filtered data gave better scores than raw data. Empirical mode decomposition (EMD) and Fourier-based filter yielded lower results than the discrete wavelet-based filter. Singular spectrum analysis gave the best result at 84.32%. The current study suggests that singular spectrum analysis removes noise from sensitive physiological signals, and EMD requires new mode selection procedures before resynthesizing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.