Abstract
The aim is to develop new fiber-reinforced polymer (FRP) water pipe by activating fiber glass (FG) by vinyltriethoxysilane (VS) getting vinylsilane-activated FG (AFG) for filling vinylester (VE) via continuous winding to make a novel VE-AFG composite. The novelty of this work is the activation of fiber glass by vinylsilane as a single filler in vinylester and compounding them via a two-dimensional continuous winding process for the first time. The crosslinking occurred in the AFG/VE/curing agent system after activation. The activated composites increased thermal stability; 25% VE-AGF increased the degradation temperatures at 10%, 25%, and 50% weight loss by 73.3%, 10%, and 7.2%. With the activated 20% composite, values of axial strength, hoop strength, and hardness were developed by 6.3%, 2%, and 8.7%, respectively. The decay resistance to different microorganisms was increased with VE-AFG composites as a result of a sharp decrease in biodegradability percentages. The activated composites are stable toward water absorption; the least percentage was recorded by 25% VE-AFG, which minimized the water absorptivity by more than 62%. The reported characterization sentence approves enhancement of thermal, physical, and mechanical stability of sustainable vinylester-fiber glass composites manufactured by continuous winding; this is recommended for application in water pipe systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.