Abstract

Significant losses in sorghum biomass and grain yield occur in sub-Saharan Africa owing to infection by the root-parasitic weed Striga hermonthica (Del.) Benth. One strategy to avoid these losses is to adopt resistant crop varieties. For further delineation of the role of germination stimulants in resistance, we conducted a field experiment employing six sorghum genotypes, in eastern Sudan, and in parallel analysed the strigolactone levels in the root exudates of these genotypes under controlled conditions in Wageningen. The root exudates of these genotypes displayed large differences in strigolactone composition and Striga-germination-inducing activity. Korokollow, Fakimustahi and Wadfahel exuded the highest amounts of 5-deoxystrigol. Fakimustahi was by far the highest sorgomol producer, and Wadbaco and SRN39 produced the highest amount of orobanchol. The concentration of 5-deoxystrigol in the root exudate showed a significant positive correlation with in vitro Striga germination and was positively associated with Striga infection in the field experiments, whereas orobanchol was negatively associated with Striga infection in the field experiments. For the first time a close association is reported between strigolactone levels analysed under laboratory conditions and Striga infection in the field in sorghum genotypes. These genotypes may be used for further study of this resistance mechanism and for the introgression of the low germination trait in other sorghum varieties to breed for a strigolactone composition with low stimulant activity. The use of such improved varieties in combination with other Striga management tools could possibly alleviate the current Striga problem on the African continent. © 2016 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call