Abstract
Ion mobility spectrometry is used for the rapid detection of drugs at points of security but are unable to differentiate some drugs leading to the instrument alarming for a drug not present in the sample. This can be particularly problematic for samples that alarm for fentanyl. In this study, fentanyl immunoassay strips were evaluated for use as a secondary test for fentanyl, including for the testing of alternative matrices, such as powders, e-liquids, and infused papers and textiles. The limit of detection of fentanyl immunoassay strips was examined along with their selectivity to 18 fentanyl analogsand 72 other drugs and cutting agents. The effectiveness of the test strips at the detection of fentanyl in the presence of other drugs was examined by testing a series of concentrations of fentanyl in solution in combination with other drugs. The testing of alternative matrices was explored with laboratory prepared samples through sampling with cotton buds and extraction in water. The fentanyl immunoassay strips detected fentanyl at concentrations of 45 ng/mL and reacted with 16 of 18 tested fentanyl analogs with carfentanil and norfentanyl being the only analogs to not react. There was no reactivity with other drugs or cutting agents. The effectiveness of the fentanyl test strips was not reduced when fentanyl was mixed with other drugs. Fentanyl was successfully detected with high sensitivity in all alternative matrices. The fentanyl immunoassay strips were found to be an effective secondary test for fentanyl and at least 16 fentanyl analogs in seized drug samples, including when mixed with other drugs. The effectiveness of the sampling methods for alternative matrices should be further evaluated using fentanyl and fentanyl analog casework samples. The use of this method by law enforcement and other agencies should be examined to assess its effectiveness and ease of use in operational settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.