Abstract
Recently laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential technique for trace explosive detection. Typically LIBS is performed using nanosecond laser pulses. For this work, we have investigated the use of femtosecond laser pulses for explosive residue detection at two different fluences. Femtosecond laser pulses have previously been shown to provide several advantages for laser ablation and other LIBS applications. We have collected LIBS spectra of several bulk explosives and explosive residues at different pulse durations and energies. In contrast to previous femtosecond LIBS spectra of explosives, we have observed atomic emission peaks for the constituent elements of explosives - carbon, hydrogen, nitrogen, and oxygen. Preliminary results indicate that several advantages attributed to femtosecond pulses are not realized at higher laser fluences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Optics Express
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.