Abstract

The evaluation of feature selection methods for text classification with small sample datasets must consider classification performance, stability, and efficiency. It is, thus, a multiple criteria decision-making (MCDM) problem. Yet there has been few research in feature selection evaluation using MCDM methods which considering multiple criteria. Therefore, we use MCDM-based methods for evaluating feature selection methods for text classification with small sample datasets. An experimental study is designed to compare five MCDM methods to validate the proposed approach with 10 feature selection methods, nine evaluation measures for binary classification, seven evaluation measures for multi-class classification, and three classifiers with 10 small datasets. Based on the ranked results of the five MCDM methods, we make recommendations concerning feature selection methods. The results demonstrate the effectiveness of the used MCDM-based method in evaluating feature selection methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.