Abstract

AbstractElements that are deliberately added to aluminum alloys or are incorporated into the alloy later depending on the production process affect the final product properties. In addition, liquid metal cleaning is important in minimizing undesirable elements. Considering the production process, one of the most harmful impurities that is likely to pass into the alloy via diffusion for aluminum is the element, Fe. It is known that this is due to the fact that although Fe is highly soluble in liquid aluminum and its alloys, it has very little solubility in solids. Depending on the Fe content, mechanical properties, porosity and fluidity properties are affected in aluminum alloys. In this study, stainless and carbon steel rods were dipped into the melt at 700 °C and 750 °C for 1, 2 and 5 h. Castings were performed before and after degassing. Four-channel fluidity mold with different section thickness was used in the trials. Additionally, microstructure characterization was performed under varying casting conditions. Fluidity Index was proposed which is a single value measured from all fluidity values in different sections. When the results were examined, it was determined that the diffusion material, holding time, casting temperature and liquid metal cleanliness had an effect on the fluidity. Due to the increase in diffusion time, a decrease in fluidity was observed in both carbon steel and stainless steel. It was found that fluidity was significantly reduced when using stainless steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.