Abstract
In this paper, a non-collinear shear wave mixing technique is proposed for evaluation of fatigue crack orientation. Numerical analysis of the nonlinear interaction of two shear waves with crack is performed using two-dimensional finite-element simulations. The simulation results show that the nonlinear interaction of the two shears waves with cracks leads to the generation of transmitted and reflected sum-frequency longitudinal waves (SFLW), moreover the propagation direction of reflected SFLW is correlated with the orientation of crack, which can be used for crack orientation evaluation. Non-collinear wave-mixing experiments were conducted on specimens with fatigue crack. The experimental results show that the directivity of the generated SFLW agrees well with the simulation results, and non-collinear shear wave mixing has potential use in fatigue crack orientation evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.