Abstract

Cereal breeding programs are interested in increasing the number of generations per year to reduce the time needed to develop new cultivars. A common method to accomplish this is to extend the photoperiod to speed up plant growth. For oat, this method is problematic because the species responds to changes in light and temperature. Current methods of fast generation cycling in oat require embryo rescue, which is labor intensive and has a low success rate. Recently a method was developed using increased photoperiod and foliar mineral supplement to reduce generation time for wheat and barley. We evaluated this newly published method in oat and found that anthesis occurred 15 ± 3 days faster, however there was a 3-fold reduction in seed count and a 2-fold reduction in inflorescence weight. In addition, we measured endogenous ascorbate to evaluate the physiological status of the plants under fast generation cycling conditions. For oat, fast generation cycling would be effective to more rapidly advance populations using single seed descent, but not as useful when seed yield is important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call