Abstract

Fastloc GPS (FGPS) is a variant of Global Positioning System (GPS) technology that offers important new utility for investigating fine-scale movements of marine animals like green turtles that surface too briefly for effective use of standard GPS. I report here on the accuracy and efficiency of this novel technology, compare it with two alternative methods, namely boat-based ultrasonic tracking and Argos Platform Transmitter Terminals (PTTs), and provide new data on the vagility and habitat selection of green turtles in shallow coastal foraging habitat. I used a combined FGPS receiver and PTT transmitter (Sirtrack, Havelock North, New Zealand) mounted together with an ultrasonic transmitter and time-depth recorder in a tether-attached housing that allowed automatic detachment and subsequent retrieval of the equipment without the requirement to recapture turtles. With this equipment I conducted short deployments (4.5 to 16.8 d) on 3 free-living adult-size green turtles in coastal foraging habitat in Queensland, Australia. In addition, stationary tests in air and afloat were conducted at the same site. FGPS location error (mean ± SD) increased as the number of satellites used in each computation decreased, from 26 m ± 19.2 (8 satellites) to 172 m ± 317.5 (4 satellites). During live tracking the frequency of FGPS locations greatly exceeded Argos PTT, such that screened data comprised about 50 times more FGPS locations despite a much tighter screening threshold for FGPS (250 m) than for Argos PTT (1000 m). FGPS locations showed the three study turtles used modest short-term activity ranges with Minimum Convex Polygon area mean ± SD 662 ha ± 293.9. They all remained within < 4.7 km of their capture–release locations and favoured shallow water, with 86% of locations at charted depths ≤ 3 m and the deepest location at 5.9 m. Fine-scale movements of each turtle varied from day to day with respect to tortuosity and areas traversed. Statistically significant day–night differences were evident in average rates of movement (greater by day) and in habitat selection, where diurnal locations had greater seagrass density while nocturnal locations featured deeper bathymetry. Individual turtles revisited some of their centres of activity (identified from 50% fixed kernel utilisation distributions) on multiple occasions but none of the study turtles travelled consistently between the same day–night pair of sites as has been reported elsewhere. Such disparity and the day-to-day variation in movements revealed by these short-term findings highlight the need for detailed tracking over longer periods at multiple locations. Fastloc GPS technology proved an effective new tool for this area of research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.