Abstract

To evaluate the effect of circular holes on the mechanical properties of laminated composite plates with different sizes, static tensile destructive tests were carried out on four different types of composite laminated plates with different layups and aperture sizes. The experimental results showed that for the four types of layup, the strength of the specimens with a diameter of 6.35 mm decreased by 44.3 %, 51.3 %, 48.0 %, and 39.4 % compared to intact specimens, and the greater the proportion of 0° layup, the greater the strength decrease of the perforated specimens. Under the same layup, as the diameter of the circular hole increased, the tensile strength decreased rapidly with the constant ratio of diameter to width. Based on the experimental results, three commonly used models for predicting the residual strength of perforated laminated composite plates, including point stress criterion, average stress criterion, and stress field intensity method, were evaluated. The results showed that the average stress criterion had higher accuracy compared to the point stress criterion and the stress field intensity method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call