Abstract
Wastewater treatment plants (WWTPs), usually designed to remove organic pollutants and nutrients, are often poorly equipped to handle pathogens. The present study investigated the multiple barriers provided by WWTPs to understand their role in spreading pathogenic bacteria into the environment. Three types of WWTPs (hospital, domestic, and mixed) differing in the source of raw influent, operating parameters, and reactor configuration (biological and tertiary treatment processes) were compared for the presence of fecal indicators and pathogenic bacteria discharged in their treated effluents. The plate-count technique was used for bacterial enumeration on selective agar. The microbial quality of the treated effluent was observed to be strongly influenced by characteristics inherent to a WWTP rather than depending on the characteristics of the raw influent. Among the different configurations studied, membrane bioreactor (MBR) treatment followed by chlorine disinfection provided an effluent of the highest quality (100% bacterial removal rates) followed by moving bed bioreactor (MBBR) combined with UV disinfection. MBR treatment greatly increased the efficiency of chlorine disinfection. Higher total suspended solids (TSS) removal corresponded to higher bacterial removal rates. Tertiary treatment proved to be an important determinant of the microbial quality of the final effluent. A great heterogeneity was observed in the removal rates of different bacterial groups with different treatment processes. The highest removal was observed in the case of indicators and least in the case of emerging pathogens like Escherichia coliO157: H7 indicating a lack of correlation between traditional indicators and emerging pathogens and also the inefficiency of the current wastewater treatment technologies in dealing with emerging pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.