Abstract

[1] This study evaluates the sensitivity of long-range transport of black carbon (BC) from midlatitude and high-latitude source regions to the Arctic to aging, dry deposition, and wet removal processes using the Geophysical Fluid Dynamics Laboratory (GFDL) coupled chemistry and climate model (AM3). We derive a simple parameterization for BC aging (i.e., coating with soluble materials) which allows the rate of aging to vary diurnally and seasonally. Slow aging during winter permits BC to remain largely hydrophobic throughout transport from midlatitude source regions to the Arctic. In addition, we apply surface-dependent dry deposition velocities and reduce the wet removal efficiency of BC in ice clouds. The inclusion of the above parameterizations significantly improves simulated magnitude, seasonal cycle, and vertical profile of BC over the Arctic compared with those in the base model configuration. In particular, wintertime concentrations of BC in the Arctic are increased by a factor of 100 throughout the tropospheric column. On the basis of sensitivity tests involving each process, we find that the transport of BC to the Arctic is a synergistic process. A comprehensive understanding of microphysics and chemistry related to aging, dry and wet removal processes is thus essential to the simulation of BC concentrations over the Arctic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.