Abstract

ObjectivesThe objectives of this study were to evaluate fluoride (F), calcium (Ca), and phosphate (P) release of ion-leaching restorative materials (ILMs), their recharge efficacy with a Ca/P-containing F varnish, and relative microhardness. MethodsThirteen groups of materials were investigated. Cylindrical-shaped specimens were fabricated. Deionised water or lactic-acid solution were used as the storage media. Solutions were changed after 1d, 4d, 7d, and 14d of ion release and at the same periods after recharge with MI Varnish (7 -h storage). F, Ca, and P measurements were accomplished using a fluoride-ion selective electrode, atomic absorption spectrometry, and colourimetric method by spectrophotometer, respectively. Relative Vickers hardness was proceeded with similar specimens used in the F assay (4 periods). SEM/EDS was additionally performed. Statistical analyses were calculated in each parameter (p < 0.05). ResultHardness of several ILMs immediately increased after recharge. After 28d, Ketac Universal [a high-viscosity glass-ionomer cement (HVGIC)] showed the highest hardness similar to the resin composite control. Although 2 HVGICs (Zirconomer and Equia Forte Fil) ranked as first and second for F release/re-release, some HVGICs had inferior or comparable F capacity to RMGICs (Fuji VIII and Fuji II LC) and a resin-based (RB) ILM (Cention N). Cention N, Activa-Restorative (RB-ILM), and Zirconomer were the top-3 ranking for Ca release/re-release. Activa-Restorative showed the highest P release, whereas Cention N displayed the greatest recharge ability for P. ConclusionsZirconomer showed a versatile performance for ion-release/re-release, especially for F. Cention N had excellent capacity in relation to Ca release and recharge ability of Ca/P. Clinical significanceWith the F varnish recharge protocol, Zirconomer, Equia Forte, and Fuji VIII seems to have an ability to inhibit initial caries initiation. Cention N is a promising resin-based material that could be an alternative for high caries risk patients due to the high Ca release/recharge with acceptable F release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call