Abstract

Cartilage defects are a major health problem. Tissue engineering has developed different strategies and several biomaterial morphologies, including natural-based ones, for repairing these defects. We used electrospun polycaprolactone (PCL) and starch-compounded PCL (SPCL) nanofiber meshes to evaluate extracellular matrix (ECM) formation by bovine articular chondrocytes (BACs). The main aim of this work was to evaluate the suitability of PCL and SPCL nanofiber meshes in chondrocyte cultures, and their capability to produce ECM when seeded onto these nanostructured materials. The effect of culture conditions (static vs dynamic) on ECM formation was also assessed. BACs were seeded onto PCL and SPCL nanofiber meshes using a dynamic cell-seeding procedure and cultured under static or dynamic conditions for 4 weeks. Constructs were characterized using scanning electron microscopy, histology, immunolocalization of collagen types I and II, and glycosaminoglycan (GAG) quantification. Results show an extensive cell colonization of the entire nanofiber mesh, for both materials, and that chondrocytes presented typical spherical morphology. Some degree of cell infiltration inside the nanofiber meshes was noticeable for both materials. ECM formation and GAG were detected throughout the materials, evidencing typical construct maturation. PCL and SPCL nanofiber meshes are suitable as supports for ECM formation and therefore are adequate for cartilage tissue-engineering approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.