Abstract

Flucytosine (5-fluorocytosine), a fluorine derivative of pyrimidine, has been studied both experimentally and quantum chemically. To obtain the optimized structure, vibrational frequencies and other various parameters, the B3LYP method with a 6-311++G(d,p) basis set was used. Atom-in-molecule theory was used to calculate the binding energies, ellipticity and isosurface projection by electron localization of the molecule (AIM). In addition, the computational results from IR and Raman were compared with the experimental spectra. NBO analysis was used to analyze the donor and acceptor interactions. To know the reactive region of the molecule, the molecular electrostatic potential (MEP) and Fukui functions were determined. The UV-Vis spectrum calculated by the TD-DFT/PCM method was also compared with the experimentally determined spectrum. The HOMO-LUMO energy outcomes proved that there was a good charge exchange occurring within the molecule. With DMSO and MeOH as the solvents, maps of the hole and electron density distribution (EDD and HDD) were produced in an excited state. An electrophilicity index parameter was looked at to theoretically test the bioactivity of the compound. To find the best ligand-protein interactions, molecular docking was also carried out with various receptor proteins. In order to verify the inhibitory potency for the receptor protein complex predicted by docking and molecular dynamic simulation studies, the binding free energy of the receptor protein complex was calculated. Using the MM/GBSA technique, we determined the docked complex’s binding free energy. To confirm the molecule’s drug similarity, a biological drug similarity investigation was also executed. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.