Abstract
In this article, the development of a stable perovskite-based photovoltaic device manufactured in a controlled environment, with humidity between 40 and 65%, and encapsulated is presented. Encapsulation using polymers like ethylene-vinyl acetate (EVA), polymethyl methacrylate (PMMA), and EVA combined with polyvinylidene fluoride (PVDF) was proposed due to the low curing temperatures, insulating properties, and simple deposition processes of these materials. Testing involved subjecting these materials to humidity, temperature, and UV irradiation, following the International Summit on Stability of Organic Photovoltaics (ISOS-T) protocols, and using a 24 W UV lamp. Characterization analyses were carried out using various technologies including digital microscopy, spectroscopic ellipsometry, Fourier-transform infrared spectroscopy and electrical simulations. The results indicate that EVA-encapsulated samples displayed higher stability and resistance against external factors compared to PMMA and EVA-PVDF. Specifically, the EVA-encapsulated samples maintained a 15.06% power conversion efficiency (PCE) after the thermal cycles were carried out, reducing only by 0.9% compared to pristine samples. Similarly, after 350 h of UV exposure, they retained a PCE of 13.90%, decreasing by just 9.58% compared to the initial value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.