Abstract

The study of the hydrologic characters of a water course permits the correct management of the corresponding basin and a greater control over the water resources of the whole basin; therefore, a suitable planning and maintenance of the necessary interventions along the water course, especially in proximity of the outlet to sea, becomes necessary. An evaluation of the solid transport allows an estimation of the erosion to which the basin is subjected as a result of the river flow, and further helps to prevent hydrologic disasters in the possible risk zones. Among the various experimental techniques in use for measuring the suspended-solid transport, nuclear methods have been preferably used in this research, which are based on monitoring the concentration of the suspended sediments. The suspended-solid concentration is detected by the attenuation of radioactivity emitted by a source of 241Am dipped in the water. This attenuation, due to the presence of the sediments transported in great amounts during events of flood is measured using a scintillation detector made up of a crystal of NaI(Tl). With appropriate calibration curves built both in the laboratory and in the field, it is possible to trace the amount of suspended-solid transport in a certain river section that is located in the proximity of the river outlet. This methodology, applied to different equipped basins in Italy and Africa, is particularly useful for small and medium water courses (similar to those of the Apennine ranges in Italy), allowing an assessment of the erosion in the whole watershed. In this note, the techniques used are introduced in detail, with particular attention to the instrument calibration, and the numerical results obtained for some basins in the Marche region (Italy) are compared with some empirical formulae used in previous reports for the calculation of erosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.