Abstract

Study regionThe Danube River Basin. Study focusHydrological modelling of large, heterogeneous watersheds requires appropriate meteorological forcing data. The global meteorological reanalysis ERA5 and the global forcing dataset WFDE5 were evaluated for driving an uncalibrated setup of the mechanistic hydrological model PROMET (0.00833333°/1 h resolution) for the period 1980–2016. Different climatologies were used for linear bias correction of ERA5: the global WorldClim 2 temperature and precipitation climatologies and the regional GLOWA and PRISM Alpine precipitation climatologies. Simulations driven with the uncorrected ERA5 reanalysis, the WFDE5 forcing dataset, ERA5 bias-corrected with WorldClim 2 and ERA5 bias-corrected with a GLOWA-PRISM-WorldClim 2 mosaic were evaluated regarding percent bias of discharge and model efficiency. New hydrological insights for the regionSimulations yielded good model efficiencies and low percent biases of discharge at selected gauges. Uncalibrated model efficiencies corresponded with previous hydrological modelling studies. ERA5 and WFDE5 were well suited to drive PROMET in the hydrologically complex Danube basin, but bias correction of precipitation was essential for ERA5. The ERA5-driven simulation bias-corrected with a GLOWA-PRISM-WorldClim 2 mosaic performed best. Bias correction with GLOWA and PRISM outperformed WorldClim 2 in the Alps due to more realistic small-scale Alpine precipitation patterns resulting from higher station densities. In mountainous terrain, we emphasize the need for regional high-resolution precipitation climatologies and recommend them for bias correction of precipitation rather than global datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call