Abstract

Models for thermostatically controlled loads in commercial buildings often include many parameters and variables compared to residential buildings. As such, it is beneficial to use reduced-order models to represent these resources. A classic example of such a model is the Virtual Battery or Equivalent Battery Model (EBM). In this paper, the typical EBM is extended to higher-order commercial Heating, Ventilation, and Air-conditioning (HVAC) models and adapted for electric water heaters. Finally, we compare the performance of EBMs with detailed thermal models using three classic optimization problems - energy maximization, energy minimization, and power reference tracking. Our results show that the EBM-constrained and detailed thermal model-constrained problems produce similar outcomes in terms of temperature, power, and total energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call