Abstract

Mesocellular foams (MCFs) silica was successfully synthesized using hydrothermal method. The mesoporous material was characterized by X-ray diffraction, infrared spectroscopy, low temperature nitrogen adsorption–desorption, scanning electron microscopy, transmission electron microscopy. The low temperature nitrogen adsorption–desorption results showed that the synthesized MCFs has a diameter of 12 nm. Transmission electron microscopy revealed that the MCFs synthesized had a good honeycomb structure aperture and is conducive to the adsorption of dye macromolecule. This paper carried out the study on the adsorption of eosin Y by MCFs. The adsorption conditions of eosin Y by MCFs were optimized and the optimum adsorption conditions obtained were: MCFs:(eosin Y) = 250:1, pH 2.0, contact time 10 min at a room temperature of 22 ± 1 °C. Under the conditions, the adsorption effect was the best, the adsorption rate reached 97.95% and the adsorption capacity reached 3.96 mg/g. The research results of adsorption kinetics for the adsorption system displayed that the adsorption is the pseudo-second-order adsorption. The research results of adsorption thermodynamics showed that △G0 < 0, ΔH0 = − 40.08 kJ/mol, ΔS0 = − 51.11 J/(mol K), and the adsorption is an exothermic, spontaneous and entropy reduction reaction process. This adsorption conforms to the isothermal adsorption equation of Langmuir, belonging to a single molecular layer adsorption. All the linear correlation coefficients of the Langmuir isotherm equations fitting (R2) were greater than 0.999.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call