Abstract

We discuss a general formalism based on the mean field plus random phase approximation (RPA) for the evaluation of entanglement measures in the ground state of spin systems. The method provides a tractable scheme for determining the entanglement entropy as well as the negativity of finite subsystems, which becomes analytic in the case of systems with translational invariance, in one or D dimensions. The approach improves as the spin increases, and also as the interaction range or connectivity increases. Illustrative results for different types of entanglement entropies (single site, block and comb) in the ground state of a small spin lattice with ferromagnetic type XY couplings in a transverse field are shown and compared with the exact numerical result. Effects arising from symmetry breaking at the mean field level are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call