Abstract
The rapid growing trend of mobile devices continues to soar causing massive increase in cyber security threats. Most pervasive threats include ransom-ware, banking malware, premium SMS fraud. The solitary hackers use tailored techniques to avoid detection by the traditional antivirus. The emerging need is to detect these threats by any flow-based network solution. Therefore, we propose and evaluate a network based model which uses ensemble Machine Learning (ML) methods in order to identify the mobile threats, by analyzing the network flows of the malware communication. The ensemble ML methods not only protect over-fitting of the model but also cope with the issues related to the changing behavior of the attackers. The focus of this study is on android based mobile malwares due to its popularity among users. We have used ensemble methods to combine output of 5 supervised ML algorithms such as RF, PART, JRIP, J.48 and Ridor. Based on the evaluation results, the proposed model was found efficient at detecting known and unknown threats with the accuracy of 98.2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.