Abstract

Because of the strategic importance of the Abydos archaeological site in Egypt as a source of wealth for Egyptian tourism, this study was concerned with carrying out geophysical measurements to detect subsurface succession and measure variations in the geotechnical engineering features of the soils/rocks in order to protect this significant area. The findings will assist geologists and seismologists in collaborating with archaeologists for future site development, revitalization, and investment. The primary objectives of this work were to determine the subsurface lithology, evaluate the engineering geotechnical properties of soils/rocks, identify the layer thicknesses, and identify the site class by calculating Vs30. To achieve these goals, seventeen (17) seismic refraction tomography (SRT) P- and S-wave measurements were executed in front of the Osirion location. SeisImager Software was used for the processing and interpretation of the outcomes. The results were the travel time–distance curves, which were used for building the 2D seismic models that exhibited the velocity and the depth of the layered models. These models were validated by our previous works using electric resistivity tomography and borehole data. The results indicated that this site consisted of three geoseismic subsurface layers. The first layer was the surface that was made up of wadi deposits, which were a mixture of gravel, sand, and silt and were characterized by incompetent to slightly competent materials. The second layer corresponded to the sand and muddy sand deposits of competent rock that was of fair to moderate quality. The third layer (clay deposits) had a higher velocity and was more compact and may be employed as a bedrock layer. The elastic moduli, Vs30, petrophysical, and geotechnical properties of the three geoseismic layers were appraised as essential parameters. Integration of petrophysical and geotechnical parameters and elastic moduli revealed that the third layer was composed of competent clays, which were characterized by low values of porosity, void ratio, Poisson ratio, and stress ratio. It also had a high rigidity, Young’s and bulk moduli, concentration and material indexes, N-value, ultimate bearing capacities, and high density values, and vice versa for the first layer. The standard NEHRP site class was B (rocks). These parameters are ordinarily used as key indications and serve as significant inputs for any future work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call