Abstract
A variety of energy release rate-based approaches are evaluated for their accuracy in predicting delamination growth in unidirectional and multidirectional laminated composites. To this end, a large number of unidirectional and multidirectional laminates were tested in different bending and tension configurations. In all cases, the critical energy release rate was determined from the tests in the most accurate way possible, such as by compliance calibration or the area method of data reduction. The mode mix from the tests, however, was determined by a variety of different approaches. These data were then examined to determine whether any of the approaches yielded the result that toughness was a single-valued function of mode mix. That is, for an approach to have accurate predictive capabilities, different test geometries that are predicted to be at the same mode mix must display the same toughness. It was found that variously proposed singular field-based mode mix definitions, such as the β=0 approach or basing energy release rate components on a finite amount of crack extension, had relatively poor predictive capabilities. Conversely, an approach that used a previously developed crack tip element analysis and which decomposed the total energy release rate into non-classical components was found to have excellent predictive capabilities. It is postulated that this approach is more appropriate for many present-day laminated composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.