Abstract

1RS.1BL translocation in wheat, exploited for its multiple disease resistance (Lr26, Yr9, Sr31 and Pm8), has maintained significance due to its agronomical advantages. However, this translocation exhibits serious defects in dough quality due to the presence of Sec-1 loci on 1RS arm. In the present investigation micro SDS sedimentation test (MST), high molecular weight glutenin subunits (HMWGS) and bread making analysis of 26 genotypes were studied along with their root phenotyping in the field and under hydroponic culture system. The MST values showed that genotypes having Sec-1 loci had low MST values but in the presence of Glu-D1 (5 + 10) with Glu-B1 (7 + 9) and (7 + 8) they had high MST values, thus overcoming the negative effects of secalin on dough quality. The loaf volume showed positive correlation with MST values of the genotypes. The translocation of 1RS arm led to higher root biomass and longer root length than Pavon 76 without 1RS. Better root traits in recombinant 1RS 44:38 and 1B + 38 than Pavon 1RS.1BL suggested the role of negative epistatic effects between different QTL regions in 1RS arm. The results suggest that it should be possible to harness the useful alleles associated with good dough quality, better root traits, high yield and stress tolerance with or without secalin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call