Abstract

BackgroundAlthough electromyogram (EMG) pattern recognition (PR) for multifunctional upper limb prosthesis control has been reported for decades, the clinical benefits have rarely been examined. The study purposes were to: 1) compare self-report and performance outcomes of a transradial amputee immediately after training and one week after training of direct myoelectric control and EMG pattern recognition (PR) for a two-degree-of-freedom (DOF) prosthesis, and 2) examine the change in outcomes one week after pattern recognition training and the rate of skill acquisition in two subjects with transradial amputations.MethodsIn this cross-over study, participants were randomized to receive either PR control or direct control (DC) training of a 2 DOF myoelectric prosthesis first. Participants were 2 persons with traumatic transradial (TR) amputations who were 1 DOF myoelectric users. Outcomes, including measures of dexterity with and without cognitive load, activity performance, self-reported function, and prosthetic satisfaction were administered immediately and 1 week after training. Speed of skill acquisition was assessed hourly. One subject completed training under both PR control and DC conditions. Both subjects completed PR training and testing. Outcomes of test metrics were analyzed descriptively.ResultsComparison of the two control strategies in one subject who completed training in both conditions showed better scores in 2 (18%) dexterity measures, 1 (50%) dexterity measure with cognitive load, and 1 (50%) self-report functional measure using DC, as compared to PR. Scores of all other metrics were comparable. Both subjects showed decline in dexterity after training. Findings related to rate of skill acquisition varied considerably by subject.ConclusionsOutcomes of PR and DC for operating a 2-DOF prosthesis in a single subject cross-over study were similar for 74% of metrics, and favored DC in 26% of metrics. The two subjects who completed PR training showed decline in dexterity one week after training ended. Findings related to rate of skill acquisition varied considerably by subject. This study, despite its small sample size, highlights a need for additional research quantifying the functional and clinical benefits of PR control for upper limb prostheses.

Highlights

  • Electromyogram (EMG) pattern recognition (PR) for multifunctional upper limb prosthesis control has been reported for decades, the clinical benefits have rarely been examined

  • We considered limiting our study to participants who had no experience with either direct control (DC) or PR control, we decided not to impose this constraint given that (1) the amputees most likely to use PR control in the future are current DC users, (2) the constraint would further challenge our capability for recruiting amputees due to the small size and geographic dispersion of the population, and (3) the participants are naïve to using DC for multi-joint prosthesis operation; they still need to learn how to switch between control mode and how to operate other DOFs nonintuitively using hand open/close intent

  • This case study compared EMG PR control with conventional direct myoelectric control, in a cross-over study involving a single subject with TR amputation, and compared skill retention and rate of skill acquisition in 2 subjects operating a 2 DOF transradial prosthesis

Read more

Summary

Introduction

Electromyogram (EMG) pattern recognition (PR) for multifunctional upper limb prosthesis control has been reported for decades, the clinical benefits have rarely been examined. Upper limb prostheses can assist amputees in activities of daily living (ADLs) such as feeding, dressing, and hygiene tasks. Due to the limitations of clinically available prosthetics technologies, a substantial proportion of persons with upper limb amputation (10–25%) do not use a prosthesis [4,5,6,7]. Of those patients that do use a prosthesis, only approximately 50% of subjects use an electric prosthesis [8]. Improving prosthetic technology in ways that yield appreciable benefits in tasks that amputees identify as important, such as ADLs, is essential to increase acceptance rates of electric prostheses and, improve quality of life post-amputation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.