Abstract

Infections, especially those caused by multi-drug resistant pathogens, result in serious problems in wound healing process. In this study, Zataria multiflora (ZM) essential oil, as a strong natural antimicrobial agent, is incorporated into poly (vinyl alcohol)-based nanofiber mats to fabricate a novel wound dressing. Different amounts of ZM essential oil (0, 2, 5 and 10% (v/v)) were incorporated into chitosan/poly(vinyl alcohol)/gelatin (CS/PVA/Gel) solutions and then were successfully electrospun into beadless and uniform fibers with 95 ± 14, 154 ± 27, 187 ± 40 and 218 ± 58 nm in diameters, respectively. The produced nanofiber mats (CS/PVA/Gel/ZM) were chemically crosslinked by glutaraldehyde vapor. The chemical compositions of ZM essential oil and nanofiber mats were analyzed using Gas Chromatography–Mass Spectrometry (GC–MS) and Fourier Transform Infrared Spectroscopy (FTIR), respectively. The antimicrobial activity of the CS/PVA/Gel/ZM nanofiber mats was determined by the AATCC100 method. The nanofiber mat loaded with 10% of ZM essential oil completely inhibited the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans after 24 h of incubation. Swelling investigations showed that the produced nanofibers have a substantial ability to take up water, in the range of 400–900%. Mechanical properties of the nanofiber mats were studied by tensile testing. Furthermore, they were found to be non-toxic by biocompatibility assays on mouse fibroblast (L929) cells. The obtained results have demonstrated that CS/PVA/Gel nanofiber mats, loaded with ZM essential oil, are promising alternatives to conventional wound dressings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call