Abstract

The electroosmotic drag coefficient of water molecules in hydrated sodium perfluorosulfonate electrolyte polymer is evaluated on the basis of the velocity distribution functions of the sodium cations and water molecules with an electric field applied using molecular dynamics simulations. The simulation results indicate that both velocity distribution functions of water molecules and of sodium cations agree well with the classic Maxwellian velocity distribution functions when there is no electric field applied. If an electric field is applied, the distribution functions of velocity component in directions perpendicular to the applied electric field still agree with the Maxwellian velocity distribution functions but with different temperature parameters. In the direction of the applied electric field, the electric drag causes the velocity distribution function to deviate from the Maxwellian velocity distribution function; however, to obey the peak shifted Maxwellian distribution function. The peak shifting velocities coincide with the average transport velocities induced by the electric field, and could be applied to the evaluation of the electroosmotic drag coefficient of water. By evaluation of the transport velocities of water molecules in the first coordination shells of sodium cations, sulfonate anion groups, and in the bulk, it is clearly shown that the water molecules in the first coordination shell of sodium cations are the major contribution to the electroosmotic drag and momentum transfer from water molecules within the first coordination shell to the other water molecules also contributes to the electroosmotic drag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call