Abstract
The interfacial resistances of La1-xSrxCo1-yFeyO3-δ (denoted LSCF(10(1-x)/10x/10(1-y)/10y)) cathodes, and the catalytic activities of a Ni-Ce0.85Y0.15O1.925 (Ni-YDC) anode and an LSCF(2/8/8/2) cathode of a single-chamber solid oxide fuel cells (SOFCs) were investigated. LSCF cathodes with high oxide ion conductivities gave low interfacial resistances. LSCF cathodes with suitable thermal expansion coefficients formed favorable interfacial structures with a ceria-based electrolyte. Ni-YDC showed a higher conversion efficiency for CH4 and a lower selectivity for CO2 than LSCF(2/8/8/2). The single-chamber SOFC based on the Sm-doped ceria electrolyte with the Ni-YDC anode and LSCF(2/8/8/2) cathode showed a maximum power density of 186 mW/cm2 at 800°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.