Abstract
This work investigates the electrical field distribution in polymeric electrodes, materials composed of polymers and nanoparticles that leverage the physicochemical interactions between constituents to modify mechanical and electrical properties. Polymeric matrices often incorporate carbon nanoparticles to impart specific conductive properties while simultaneously enhancing mechanical stability through a protective polymer layer. The morphology, dielectric properties, and geometric configuration of these materials influence the electric field distribution, which is critical to their functionality. Utilizing finite element modeling, this study not yet explored aims to predict these effects and guide the design of material compositions and structural geometries to optimize functionalities like catalytic activity, adhesion enhancement, and interface energy reduction. Simulations were conducted using COMSOL 6.0 across eight similar geometric configurations, assessing polarization, and electric potential distribution. Results underscore the importance of surface polarization in controlling roughness and optimizing biosensor performance for liquid samples. Notably, controlled surface roughness induces asymmetric electric field distortions at biosensor edges, influencing dipole moments in polarizable nanoparticles. Each tested geometry demonstrated unique characteristics pertinent to its application in 3D-printed biosensors, influenced by surface roughness and wettability. Additionally, modifications in the electrical double layer due to controlled roughness alter charge distributions at the electrode-electrolyte interface, affecting electric field configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.