Abstract

Agricultural biomaterials such as crop stalks are natural sources of cellulosic fiber and have great potential as reinforced materials in bio-composites. In order to evaluate their potential as materials for reinforcement, the nano-mechanical properties of crop-stalk cell walls, i.e. those of cotton (Gossypium herbaceu) stalk, soybean (Glycine max) stalk, cassava (Manihot esculent) stalk, rice (Oryza sativa L.) straw, and wheat (Triticum aestivum L.) straw, were investigated by means of nano-indentation and atomic force microscopy (AFM). The elastic modulus of wheat straw was found to be 20.8 GPa, which was higher than that of the other four crops. The highest hardness was observed in cotton stalk at 0.85 GPa. The elastic moduli of the crop stalks were lower than those of most of the hardwood species, but higher than that of some softwoods and of lyocell fiber. The mean value of the hardness of the five crop stalks' cell walls was higher than those of wood or lyocell fiber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.