Abstract
For an effective control of tuberculosis, rapid detection of multidrug resistant tuberculosis (MDR-TB) is necessary. Therefore, we developed a modified nested multiplex allele-specific polymerase chain reaction (MAS-PCR) method that enables rapid MDR-TB detection directly from sputum samples. The efficacy of this method was evaluated using 79 sputum samples collected from suspected tuberculosis patients. The performance of nested MAS-PCR method was compared with other MDR-TB detection methods like drug susceptibility testing (DST) and DNA sequencing. As rifampicin (RIF) resistance conforms to MDR-TB in greater than 90% cases, only the presence of RIF-associated mutations in rpoB gene was determined by DNA sequencing and nested MAS-PCR to detect MDR-TB. The concordance between nested MAS-PCR and DNA sequencing results was found to be 96·3%. When compared with DST, the sensitivity and specificity of nested MAS-PCR for RIF-resistance detection were determined to be 92·9 and 100% respectively. For developing- and high-TB burden countries, molecular-based tests have been recommended by the World Health Organization for rapid detection of MDR-TB. The results of this study indicate that, nested MAS-PCR assay might be a practical and relatively cost effective molecular method for rapid detection of MDR-TB from suspected sputum samples in developing countries with resource poor settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.