Abstract
Reliable estimation of missing data is an important task for meteorologists, hydrologists and environment protection workers all over the world. In recent years, artificial intelligence techniques have gained enormous interest of many researchers in estimating of missing values. In the current study, we evaluated 11 artificial intelligence and classical techniques to determine the most suitable model for estimating of climatological data in three different climate conditions of Iran. In this case, 5 years (2001–2005) of observed data at target and neighborhood stations were used to estimate missing data of monthly minimum temperature, maximum temperature, mean air temperature, relative humidity, wind speed and precipitation variables. The comparison includes both visual and parametric approaches using such statistic as mean absolute errors, coefficient of efficiency and skill score. In general, it was found that although the artificial intelligence techniques are more complex and time-consuming models in identifying their best structures for optimum estimation, but they outperform the classical methods in estimating missing data in three distinct climate conditions. Moreover, the in-filling done by artificial neural network rivals that by genetic programming and sometimes becomes more satisfactory, especially for precipitation data. The results also indicated that multiple regression analysis method is the suitable method among the classical methods. The results of this research proved the high importance of choosing the best and most precise method in estimating different climatological data in Iran and other arid and semi-arid regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.