Abstract
Pumping in rigid pavements is defined as the migration of subgrade soil into the overlying layers, redistribution of materials under the slabs, and ejection of materials through joints. Pumping can compromise pavement performance. This study evaluated geotextiles as separation and filtration solutions to mitigate pumping and reduce the resulting pavement joint faulting. A one-third scale Model Mobile Load Simulator (MMLS3) was used to simulate cyclic loading on a scaled rigid highway pavement that has experienced some loss of load transfer. The results from four tests were compared to assess the effectiveness of geotextile in reducing pumping. The four experiments had identical configurations, except that a geotextile was placed at the subgrade-subbase interface in two tests. Non-plastic saturated silt and partially saturated aggregate were used as the subgrade and subbase, respectively. Using a geotextile at the subgrade-subbase interface substantially reduced pumping. More fines accumulated in the subbase beneath the approach slab than the leave slab, which resulted in faulting of the slabs. However, the magnitude of this faulting was more pronounced for the cases without geotextile. Reductions of 71% and 52% occurred in the magnitude of subgrade migration and faulting, respectively, when using geotextile. To conclude, geotextile can be effective in mitigating pumping, leading to longer-lasting pavement systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.