Abstract
Carbon nanotubes (CNTs) possess exceptional mechanical properties and are therefore suitable candidates for use as reinforcements in composite materials. Substantial improvements in mechanical properties of polymers have been attained through the addition of small amounts of CNTs. The CNTs, however, form complicated shapes and do not usually appear as straight reinforcements when introduced in polymer matrices. In this paper, theory of elasticity of anisotropic materials and finite element method (FEM) are used to determine effective mechanical properties of sinusoidal-nanotube reinforced polymers. The effects of CNT shape, orientation, and CNT distribution on nanocomposite effective properties are investigated by modeling different CNT-reinforced polymers. Also, the effects of interface strength on nanocomposite properties are investigated using an elastic interface model. The results indicate that even a slight nanotube curvature significantly reduces the reinforcing efficiency of sinusoidal — nanotubes compared to straight nanotubes. Also, in-plane isotropy was observed in the results obtained from the random CNT reinforced polymer. Finally, increasing the interface strength results in higher nanocomposite longitudinal modulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.