Abstract

This paper presents a measurement method for determining effective conductivity of copper-clad dielectric laminate substrates in the millimeter-wave region. The conductivity is indirectly evaluated from measured resonant frequencies and unloaded Q values of a number of Whispering Gallery modes excited in a circular disk sample, which consists of a copper-clad dielectric substrate with a large diameter of 20-30 wavelengths. We can, therefore, obtain easily the frequency dependence of the effective conductivity of the sample under test in a wide range of frequency at once. Almost identical conductivity is predicted for two kinds of WG resonators (the copper-clad type and the sandwich type) with different field distribution; it is self-consistent and provides the important foundation for the method if not for the alternative method at this moment. We measure three kinds of copper foils in 55-65GHz band, where the conductivity of electrodeposited copper foil is smaller than that of rolled copper foil and shiny-both-sides copper foil. The measured conductivity for the electrodeposited copper foil decreases with an increase in the frequency. The transmission losses measured for microstrip lines which are fabricated from these substrates are accurately predicted with the conductivity evaluated by this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.