Abstract

A hallmark of human immunodeficiency type-1 (HIV) infection is the integration of the viral genome into host chromatin, resulting in a latent reservoir that persists despite antiviral therapy or immune response. Thus, key priorities toward eradication of HIV infection are to understand the mechanisms that allow HIV latency and to develop latency reversal agents (LRAs) that can facilitate the clearance of latently infected cells. The repressive H3K27me3 histone mark, catalyzed by the PRC2 complex, plays a pivotal role in transcriptional repression at the viral promoter in both cell line and primary CD4+ T cell models of latency. EZH2 inhibitors which block H3K27 methylation have been shown to act as LRAs, suggesting other PRC2 components could also be potential targets for latency reversal. EED, a core component of PRC2, ensures the propagation of H3K27me3 by allosterically activating EZH2 methyltransferase activity. Therefore, we sought to investigate if inhibition of EED would also reverse latency. Inhibitors of EED, EED226 and A-395, demonstrated latency reversal activity as single agents, and this activity was further enhanced when used in combination with other known LRAs. Loss of H3K27me3 following EED inhibition significantly increased the levels of H3K27 acetylation globally and at the HIV LTR. These results further confirm that PRC2 mediated repression plays a significant role in the maintenance of HIV latency and suggest that EED may serve as a promising new target for LRA development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.